Круглосуточно
whatsapp telegram vkontakte email

Технологическая схема производства волокна Нитрон-д

Свойства волокна

Механические качества нитрона больше напоминают шерсть. При этом он:

  • оказывается более стойким к воздействию сильных кислот;
  • не теряет своих свойств под действием щелочей;
  • на его прочность не оказывают влияния растворители, которые чаще всего используются в процессе чистки одежды или при стирке.

Нитрон прекрасно сохраняет тепло, обладает устойчивостью к влиянию микроорганизмов и действию света, почти не дает усадки. Ткань из такого полотна легко окрашивается, не теряет своих качеств при длительном нахождении в помещении с высокой влажностью (это свойство позволяет использовать материал для штор в ванной комнате).

Внешне ткань нитрон напоминает не только шерсть, это может быть и штапель.

Волокно применяется в процессе производства:

  • верхнего трикотажа;
  • плательных тканей;
  • ковров;
  • костюмных тканей;
  • белья (в этом случае к волокну добавляют хлопок или вискозу);
  • обивочных материалов;
  • брезентов;
  • портьерных тканей.

Как нельзя лучше такой материал подходит для применения на открытом воздухе. Даже подверженная влиянию агрессивных погодных явлений ткань с нитроном лишь на 20% теряет прочность (для сравнения: устойчивость хлопка в таких условиях снижается на 95%).

При горении нитрона заметны вспышки, образуется копоть. Когда процесс прекращается, возникает неправильной формы наплыв, который можно легко раздавить.

Нейроглия

Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.


Клетки нейроглии

Макроглия:

Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.

Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.

Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.

Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.

Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.

Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.

Нейроны подразделяются за функциональными возможностями:

  • Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
  • ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
  • эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.

Вместе они формируют рефлекторную дугу, которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.

Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.

Применение, преимущества и недостатки

Такие ткани не деформируются, хорошо сохраняют форму, отличаются устойчивостью к воздействию ионизирующего излучения, не повреждаются молью.

Также будет интересно: Свойства ткани нейлон и применение для штор

Использовать ткани из нитрона для пошива одежды, которая непосредственно соприкасается с телом, нецелесообразно: материал влагу не впитывает, поэтому естественный теплообмен будет нарушен, на коже могут появиться опрелости.

С целью удешевления сырья, придания формоустойчивости тканям, нитрон добавляют к хлопку, мохеру, шерсти, ангоре. Учитывая, что такие материалы практически не дают усадки, устойчивы к воздействию ультрафиолетовых лучей и хорошо сохраняют форму, их используют для изготовления:

  • одеял;
  • портьер;
  • диванных подушек;
  • пледов.

Ткани с содержанием нитрона прочнее в 4 раза по сравнению с теми, в состав которых входит искусственный шелк. Волокно используется при производстве штор-плиссе, позволяющих надежно защищать помещение от света. У нитрона высокая способность к сохранению плиссировки (у шерсти она ниже в 5 раз, у вискозных нитей — в 20 раз).

Себестоимость нитрона низкая, поэтому его используют при производстве высокообъемной пряжи. В дальнейшем из таких ниток изготавливают трикотажные изделия. Искусственный мех, различные коврики также содержат в своем составе нитрон.

Пожалуй, одним из недостатков волокна является его ограниченная цветовая гамма в связи с тем, что оно способно окрашиваться не всеми красителями.

У волокна нитрона множество положительных качеств:

  • под влиянием ультрафиолета не теряет цвет и не разрушается;
  • выдерживает высокую температуру;
  • на ощупь мягкий, приятный;
  • хорошо сохраняет форму;
  • обладает высокими теплоизоляционными свойствами;
  • быстро сохнет;
  • выдерживает воздействие ацетона, бензина, щелочей и кислот средней концентрации.

Однако ему присущи некоторые недостатки (впрочем, которые отмечаются у большинства синтетических волокон):

  • не способен впитывать влагу;
  • не пропускает воздух;
  • в процессе эксплуатации образуются катышки;
  • легко электризуется;
  • впитывает жиры, в результате этого возникают пятна, которые трудно вывести.

Ткани и трикотажные изделия, в составе которых имеется нитрон, нетребовательны к уходу. Они спокойно выдерживают стирку с применением сильных моющих средств, не нуждаются в утюжке (ткань плохо сминается). Рекомендуется стирка при температуре воды не более 30°, сушка в стиральной машине нежелательна.

Также будет интересно: Шторы из шелковой ткани

Не следует выкручивать изделия, сушить лучше в расправленном виде на горизонтальной поверхности. Можно сдавать их в химчистку, однако под воздействием фенола и формалина вещь может прийти в негодность (волокна разрушаются).

Нитрон легко очищается от загрязнений, не сминается. Однако отличается низкой устойчивостью к истиранию (по этому показателю сравним даже с хлопком).

Сохранить

Сохранить

Сохранить

Сохранить

Сохранить

Строение и морфологическая характеристика нервных тканей

Строение нейрона
Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.

До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.

Отростки делятся на два типа – это дендриты и аксоны.

Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.

Строение дендрита. У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.

По количеству отростков нейроциты делятся на:

  • униполярные (есть только один отросток, аксон);
  • биполярные (присутствует и аксон, и дендрит);
  • псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
  • мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).

Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.

ГИСТОЛОГИЯ, ЦИТОЛОГИЯ И ЭМБРИОЛОГИЯ

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Общая морфофункциональная характеристика нервной ткани.

2. Эмбриональный гистогенез. Дифференцировка нейробластов и глиобластов. Понятие о регенерации структурных компонентов нервной ткани.

3. Нейроциты (нейроны): источники развития, классификация, строение, регенерация.

4. Нейроглия. Общая характеристика. Источники развития глиоцитов. Классификация. Макроглия (олигодендроглия, астроглия и эпендимная глия). Микроглия.

5. Нервные волокна: общая характеристика, классификация, строение и функции безмиелиновых и миелиновых нервных волокон, дегенерация и регенерация нервных волокон.

6. Синапсы: классификации, строение химического синапса, строение и механизмы передачи возбуждения.

7. Рефлекторные дуги, их чувствительные, двигательные и ассоциативные звенья.

Минивидеоаудиолекции по Нервной ткани на этой странице — здесь.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

НЕРВНАЯ ТКАНЬ

Нервная ткань

выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани – клетки нейроны

и
нейроглия
.

Нейроны

Нейроны

состоят из тела (
перикариона
) и отростков, среди которых выделяют
дендриты
и
аксон
(нейрит). Дендритов может быть множество, аксон всегда один.

Нейрон как любая клетка состоит из 3 компонентов: ядра, цитоплазмы и цитолеммы. Основной объём клетки приходится на отростки.

Ядро

занимает центральное положение в
перикарионе.
В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма

принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма

нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы

.

Хроматофильное вещество

цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.) в виде зернистости – это скопления цистерн грЭПС. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Процесс разрушения или распада глыбок базофильного вещества называется
тигролизом
и наблюдается при реактивных изменениях нейронов (например, при их повреждении) или при их дегенерации.

Нейрофибриллы

– это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки.
Нейрофиламенты
представляют собой
промежуточные филаменты
диаметром 8-10 нм, образованные фибриллярными белками. Основной функцией этих элементов цитоскелета является опорная – для обеспечения стабильной формы нейрона. Подобную же роль играют тонкие
микрофиламенты
(поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы

по основным принципам своего строения фактически не отличаются от микротрубочек. Они, как и все микротрубочки имеют поперечный диаметр около 24 нм, кольца замыкают 13 молекул глобулярного белка тубулина. В нервной ткани микротрубочки выполняют очень важную, если не сказать уникальную роль. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Микротрубки полярны. Именно полярность микротрубки, в которой имеется отрицательно и положительно заряженные концы, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Их подробное описание приведем ниже.

Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

Нейроны в энергетическом отношении крайне зависимы от аэробного фосфорилирования и во взрослом состоянии фактически не способы к анаэробному гликолизу. В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока нервные клетки практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. При мгновенной смерти, при комнатной температуре, и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком клинической смерти, когда возможно оживление организма. Необратимые изменения в нервной ткани приводят к переходу от клинической смерти к биологической.

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты

– короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон

(нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

Аксоток (аксоплазматический транспорт веществ).

Нервные волокна имеют своеобразный структурный аппарат – микротрубочки, по которым перемещаются вещества от тела клетки на периферию (
антероградный аксоток
) и от периферии к центру (
ретроградный аксоток
).

Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток. Быстрый аксоток

– одинаков для различных волокон; требует значительной концентрации АТФ; происходит с участием транспортных пузырьков. Он осуществляет транспорт медиаторов и модуляторов.
Медленный аксоток
– за счет него от центра к периферии распространяются биологически активные вещества, а также компоненты мембран клеток и белков.

Нервный импульс

передаётся по мембране нейрона в определённой последовательности: дендрит – перикарион – аксон.

Классификация нейронов

1. По морфологии (по количеству отростков) выделяют:

мультиполярные

нейроны (г) — с множеством отростков (их большинство у человека),

униполярные

нейроны (а) — с одним аксоном,

биполярные

нейроны (б) — с одним аксоном и одним дендритом (сетчатка глаза, спиральный ганглий).

— ложно- (псевдо-) униполярные

нейроны (в) – дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.

2. По функции (по расположению в рефлекторной дуге) выделяют:

афферентные (чувствительные

) нейроны (стрелка слева) – воспринимают информацию и передают ее в нервные центры. Типичными чувствительными являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;

ассоциативные (вставочные

) нейроны осуществляют взаимодействие между нейронами, их большинство в ЦНС;

эфферентные (двигательные

) нейроны (стрелка справа) генерируют нервный импульс и передают возбуждение другим нейронам или клеткам других видов тканей: мышечным, секреторным клеткам.

Синапсы

Синапсы

– это специфические контакты нейронов, обеспечивающие передачу возбуждения от одной нервной клетки к другой. В зависимости от способов передачи возбуждения выделяют химические и электрические синапсы.

Эволюционно более древними и примитивными являются электрические синаптические контакты

. Они по строению близки к щелевидным контактам (нексусам). Считается, что обмен происходит в обе стороны, но имеются случаи, когда возбуждение передаются в одном направлении. Такие контакты часто встречаются у низших беспозвоночных и хордовых. У млекопитающих электрические контакты имеют большое значение в процессе межнейронных взаимодействий в эмбриональном периоде развития. Подобный вид контактов у взрослых млекопитающих имеет место в ограниченных участках, например их можно видеть в мезэнцефалическом ядре тройничного нерва.

Химические синапсы

. Химические синапсы для передачи возбуждения от одной нервной клетки к другой используют специальные вещества –
медиаторы
, от чего и получили свое название. Кроме медиаторов ими используются и
модуляторы
. Модуляторы это специальные химические вещества, которые сами возбуждения не вызывают, но могут либо усиливать, либо ослаблять чувствительность к медиаторам (то есть модулировать пороговую чувствительность клетки к возбуждению).

Химический синапс

обеспечивает однонаправленную передачу возбуждения. Строение химического синапса:

1) Пресинаптическая зона

– пресинаптическое расширение, наиболее часто представляющее собой терминаль аксона, в котором содержатся синаптические пузырьки, элементы цитоскелета (нейротубулы и нейрофиламенты), митохондрии;

2) Синаптическая щель

, которая принимает медиаторы из пресинаптической зоны;

3) Постсинаптическая зона

– это электронноплотное вещество с рецепторами к медиатору на мембране другого нейрона
.

ФИЛЬМ СИНАПСЫ Классификация синапсов

:

1. В зависимости от того, какие структуры двух нейронов взаимодействуют в синапсе, можно выделить:

— аксо-дендритические (пресинаптическая структура аксон, постсинаптическая — дендрит);

— аксо-аксональные;

— аксо-соматические.

2. По функции выделяют:

возбуждающие

синапсы, которые приводят к деполяризации постсинаптической мембраны и активации нервной клетки;

— тормозные синапсы

, которые приводят к гиперполяризации мембраны, что снижает пороговую чувствительность нейрона к внешним влияниям.

3. По основному медиатору, содержащемуся в синаптических пузырьках, синапсы делятся на группы:

  1. Холинергические (ацетилхолинергические): возбуждающие и тормозные;
  2. Адренергические (моноаминергические, норадренергические, дофаминергические): в основном, возбуждающие, но есть и тормозные;
  3. Серотонинергические (иногда приписываются к предыдущей группе): возбуждающие;
  4. ГАМК-ергические (медиатор гаммааминомаслянная кислота): тормозные;
  5. Пептидергические (медиаторы – большая группа вешеств, в основном: вазоинтерстициальный полипептид, вазопрессин, вещество Р (медиатор боли), нейропептид Y, окситоцин, бета-эндорфин и энкефалины (противоболевые), динорфин и т.д.).

Синаптические пузырьки

отделены от гиалоплазмы одной мембраной. Холинсодержащие пузырьки электронносветлые, диаметром 40-60 мкм. Адренсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 50-80 мкм. Глицинсодержащие и ГАМК-содержащие – имеют овальную форму. Пептидсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 90-120 мкм.

Механизм передачи возбуждения в химическом синапсе:

импульс, приходящий по афферентному волокну, вызывает возбуждение в пресинаптической зоне и приводит к выделению медиатора через пресинаптическую мембрану. Медиатор поступает в синаптическую щель. На постсинаптической мембране имеются рецепторы к нейромедиатору (холинорецепторы для медиатора ацетилхолина; адренорецепторы для норадреналина). В последующем связь медиаторов с рецепторами разрывается. Медиатор либо метаболизируется, либо подвергается обратному всасыванию пресинаптическими мембранами, либо захватывается мембранами астроцитов с последующей передачей медиатора к нервным клеткам.

Регенерация нейронов.

Для нейронов характерна только внутриклеточная регенерация. Они являются стабильной популяцией клеток и в обычных условиях не делятся. Но имеются исключения. Так, доказана способность к делению у нервных клеток в эпителии обонятельного анализатора, в некоторых ганглиях (скоплениях нейронов вегетативной нервной системы) животных.

Нейроглия

Нейроглия — группа клеток нервной ткани, находящиеся между нейронами, различают микроглию и макроглию.

Макроглия

Макроглия ЦНС подразделяется на следующие клетки: астроциты (волокнистые и протоплазматические), олигодендроциты и эпендимоциты (в том числе и танициты).

Макроглия периферической нервной системы: сателлитоциты и леммоциты (шванновские клетки).

Функции макроглии: защитная, трофическая, секреторная.

Астроциты –

звездчатые клетки, многочисленные отростки которых ветвятся и окружают другие структуры мозга. Астроциты есть только в ЦНС и анализаторах – производных нервной трубки.

Виды астроцитов: волокнистые и протоплазматические астроциты.

Терминали отростков обоих типов клеток имеют пуговичные расширения (ножки астроцитов), большинство из которых заканчивается в периваскулярном пространстве, окружая капилляры и образуя периваскулярные глиальные мембраны.

Волокнистые астроциты

имеют многочисленные, длинные, тонкие, слабо или совсем не ветвящиеся отростки. В основном присутствуют в белом веществе мозга.

Протоплазматические

астроциты отличаются короткими, толстыми и сильно ветвящимися отростками. Имеются преимущественно в сером веществе мозга. Астроциты располагаются между телами нейронов, немиелинизированной и миелинизированной частями нервных отростков, синапсами, кровеносными сосудами, подэпендимными пространствами, изолируя и в то же время структурно связывая их.

Специфическим маркером астроцитов является глиальный фибриллярный кислый белок, из которого образуются промежуточные филаменты.

Астроциты имеют относительно крупные светлые ядра, со слабо развитым ядрышковым аппаратом. Цитоплазма слабо оксифильная, в ней слабо развита аЭПС и грЭПС, комплекс Гольджи. Митохондрий мало, они небольших размеров. Цитоскелет развит умеренно в протоплазматических и хорошо – в волокнистых астроцитах. Между клетками значительное число щелевидных и десмосомоподобных контактов.

В постнатальный период жизни человека астроциты способны к миграции, особенно в зоны повреждения и способны к пролиферации (из них образуются доброкачественные опухоли астроцитомы).

Основные функции астроцитов

: участие в
гематоэнцефалическом и ликворогематическом барьерах
(своими отростками покрывают капилляры, поверхности мозга и участвуют в транспорте веществ от сосудов к нейронам и наоборот), в связи с этим выполняют защитную, трофическую, регуляторную функции; фагоцитоз погибших нейронов, секреция биологически активных веществ: ФРФ, ангиогенные факторы, ЭФР, интерлейкин–I, простагландины.

Олигодендроциты

клетки с небольшим числом отростков
,
способные к образованию миелиновых оболочек вокруг тел и отростков нейронов. Олигодендроциты находятся в сером и белом веществе ЦНС, в периферической нервной системе располагаются разновидности олигодендроцитов – леммоциты (шванновские клетки). Олигодендроциты и их разновидности характеризуются способностью образовывать дупликатуру мембраны –
мезаксон
, который окружает отросток нейрона, образуя миелиновую или безмиелиновую оболочку.

Ядра олигодендроцитов мелкие, округлые, темноокрашенные, отростки тонкие, не ветвятся или слабо ветвятся. На электроннооптическом уровне в цитополазме хорошо развиты органеллы, особенно синтетический аппарат, слабо развит цитоскелет.

Часть олигодендроцитов концентрируется в непосредственной близости к телам нервных клеток (сателлитные, или мантийные олигодендроциты

). Терминальная зона каждого отростка участвует в формировании сегмента нервного волокна, то есть каждый олигодендроцит обеспечивает окружение сразу нескольких нервных волокон.

Леммоциты (шванновские клетки)

периферической нервной системы характеризуются удлиненными, темноокрашенными ядрами, слабо развитыми митохондриями и синтетическим аппаратом (гранулярная, гладкая ЭПС, пластинчатый комплекс). Леммоциты окружают отростки нейронов в периферической нервной системе, образуя миелиновую или безмиелиновую оболочки. В области формирования корешков спинномозговых и черепно-мозговых нервов леммоциты формируют скопления (глиальные пробки), предотвращая проникновение отростков ассоциативных нейронов ЦНС за ее пределы.

В периферической нервной системе, помимо леммоцитов,

имеются другие разновидности олигодендроцитов:
сателлитные (мантийные) глиоциты
в периферических нервных узлах вокруг тел нейронов,
глиоциты нервных окончаний
, конкретные морфологические особенности которых рассматриваются при изучении нервных окончаний и анатомии нервных узлов.

Основные функции олигодендроцитов и их разновидностей

: образуя миелиновую или безмиелиновую оболочки вокруг нейронов, обеспечивают изолирующей, трофической, опорной, защитной функциями; участвуют в проведении нервного импульса, в регенерации поврежденных нервных клеток, фагоцитозе остатков осевых цилиндров и миелина при нарушении структуры аксона дистальнее места повреждения.

Эпендимоциты

, или эпендимная глия – клетки низкопризматической формы, образующие непрерывный пласт, покрывающий полости мозга. Эпендимоциты тесно прилежат друг к другу, формируя плотные, щелевидные и десмосомальные контакты. Апикальная поверхность содержит реснички, которые у большинства клеток затем замещаются микроворсинками. Базальная поверхность имеет базальные впячивания (инвагинации), а также длинные тонкие отростки (от одного до нескольких), которые проникают до периваскулярных пространств микрососудов мозга.

В цитоплазме эпендимоцитов обнаруживаются митохондрии, умеренно развитый синтетический аппарат, хорошо представлен цитоскелет, имеется значительное количество трофических и секреторных включений.

Вариантом эпендимной глии являются танициты

. Они выстилают сосудистые сплетения желудочков головного мозга, субкомиссуральный орган задней комиссуры. Активно участвуют в образовании ликвора (спинномозговой жидкости). Характеризуются тем, что базальная часть содержит тонкие длинные отростки.

Основные функции эпендимоцитов

: секреторная (синтез ликвора), защитная (обеспечение
гемато-ликворного барьера
), опорная, регуляторная (предшественники таницитов направляют миграцию нейробластов в нервной трубке в эмбриональном периоде развития).

Микроглия

Микроглиоциты, или нейральные макрофаги

клетки небольших размеров мезенхимного происхождения (производные моноцитов), диффузно распределенные в ЦНС, с многочисленными сильно ветвящимися отростками, способны к миграции. Микроглиоциты – специализированные макрофаги нервной системы. Их ядра характеризуются преобладанием гетерохроматина. В цитоплазме обнаруживается много лизосом, гранул липофусцина; синтетический аппарат развит умеренно.

Функции микроглии: защитная (в том числе иммунная).

Нервные волокна

Нервное волокно состоит из отростка нейрона – осевого цилиндра

(дендрита или аксона) и
оболочки олигодендроцита или его разновидностей
.

Виды нервных волокон:

1)

В зависимости от того, как произошло образование оболочки, нервные волокна подразделяются на
миелиновые
и
безмиелиновые.
В периферической нервной системе нервные волокна окружают леммоциты. Один леммоцит связан с одним нервным волокном. В центральной нервной системе отростки нейронов окружают олигодендроциты. Каждый олигодендроцит участвует в формировании нескольких нервных волокон.

Миелинизация

волокон осуществляется путем удлинения и «наворачивания» мезаксона вокруг отростка нервной клетки (в периферической нервной системе) или удлинения и вращения отростка олигодендроцита вокруг осевого цилиндра в ЦНС.

Миелиновые

(мякотные) волокна в периферической нервной системе имеют в своём составе один отросток нейрона, окружённый удлинённой дупликутурой леммоцита (мезаксон). В миелиновом волокне мезаксон многократно оборачивается вокруг осевого цилиндра, формируя многократные витки мембраны – миелин. Зоны разрыхления миелина (проникновения цитоплазмы леммоцита) называются
насечками
(Шмидта-Лантермана). Каждый леммоцит образует сегмент волокна, участки границ соседних клеток немиелинизированы и называются
перехватами Ранвье
, таким образом, по длине волокна миелиновая оболочка имеет прерывистый ход. Миелиновая оболочка является биологическим изолятором. Распространение деполяризации в миелиновом волокне осуществляется скачками от перехвата к перехвату.

Безмиелиновые

(безмякотные) волокна в периферической нервной системе состоят из одного или нескольких осевых цилиндров, погружённых в цитолемму окружающего их леммоцита. Мезаксон (дупликатура мембраны) короткий. Передача возбуждения в безмиелиновых волокнах происходит по поверхности нерва через изменение поверхностного заряда.

2) В зависимости от скорости проведения нервного импульса различают следующие типы нервных волокон:

  1. Тип А
    имеет подгруппы:

Аa

— обладают наибольшей скоростью проведения возбуждения — 70-120 м/с (соматические двигательные нервные волокна);

— Аb

— скорость проведения составляет 40-70 м/с. Это соматические афферентные нервы и некоторые эфферентные соматические нервы;

Аg

— скорость проведения составляет 15-40 м/с — афферентные и эфферентные симпатические и парасимпатические нервы;

Аd

(дельта) — скорость проведения 5-18 м/с. По этой группе афферентных соматических нервов проводятся первичная (быстрая) боль.

  1. Тип В
    – скорость проведения от 3 до 14 м/с – преганглионарные симпатические волокна, некоторые парасимпатические волокна, то есть это вегетативные нервы.
  2. Тип С
    – скорость проведения 0,5-3 м/с: постганглионарные вегетативные волокна (безмиелиновые). Проводят болевые импульсы медленной вторичной боли (от рецепторов пульпы зуба).

Нейрогенез.

На 15-17 сутки внутриутробного развития человека под индуцирующим влиянием хорды из
первичной эктодермы
формируется нервная пластинка (скопление продольно лежащего клеточного материала). С 17 по 21 сутки пластинка инвагинирует и превращается сначала в
нервный желобок
, а затем в
трубку
. К 25 суткам эмбриогенеза происходит отщепление нервной трубки от эктодермы и замыкание переднего и заднего отверстий (нейропоров). По бокам от нервного желобка располагаются
структуры нервного гребня
.

На ранних сроках развития нервная трубка сформирована медулобластами –

стволовыми клетками нервной ткани ЦНС. Из нервного гребня образуется
ганглиозная пластинка
состоящая из
ганглиобластов
– стволовых клеток нейронов и нейроглии периферической нервной системы. Медулобласты и ганглиобласты интенсивно иммигрируют, делятся и затем дифференцируются.

В ранние сроки внутриутробного развития нервная трубка представляет собой пласт отростчатых клеток, лежащих в виде одного слоя, но в несколько рядов. Изнутри и снаружи они ограничены пограничными мембранами. На внутренней поверхности (прилежащей к полости нервной трубки) медулобласты делятся.

В последующем нервная трубка формирует несколько слоев

. Среди них можно выделить:

Внутренняя пограничная мембрана

: отделяет полость нервной трубки от клеток;

Эпендимный слой

(вентрикулярный в области мозговых пузырей) представлен бластными клетками-предшественниками макроглии;

Субвентрикулярная зона

(только в передних мозговых пузырях), где происходит пролиферация нейробластов;

Мантийный (плащевой) слой

, содержащий мигрирующие и дифференцирующиеся нейробласты и глиобласты;

Маргинальный слой

(краевая вуаль) сформирован отростками глиобластов и нейробластов. В ней можно видеть тела отдельных клеток.

Наружная пограничная мембрана

.

Диффероны нервной ткани центральной нервной системы

  1. Дифферон нейрона: медулобласт – нейробласт – молодой нейрон – зрелый нейрон. Дифферон астроцита: медулобласт – спонгиобласт – астробласт – протоплазматический или волокнистый астроцит.
  2. Диферрон олигодендроцита: медулобласт — спонгиобласт – олигодендробласт – олигодендроцит.
  3. Дифферон эпендимной глии: медулобаст – эпендимобласт – эпендимоцит или таницит.
  4. Дифферон микроглии: стволовая клетка крови – полустволовая клетка крови (КОЕ ГЭММ) – КОЕ ГМ – КОЕ М – монобласт – промоноцит – моноцит – микроглиоцит покоя – активированный микроглиоцит.

Диффероны нервной ткани в периферической нервной системе

1. Дифферон нейрона: ганглиобласт – нейробласт – молодой нейрон – зрелый нейрон.

2.Дифферон леммоцита: ганглиобласт – глиобласт – леммоцит (шванновская клетка).

Механизмы нейрогенеза.

В процессе внутриутробного развития нейробласты мигрируют в области анатомических закладок нервных центров. При этом они прекращают делиться. В ЦНС миграция нейробластов контролируется адгезивными межклеточными взаимодействиями (с помощью кадгеринов и интегринов радиальной глии), сигнальными молекулами межклеточного вещества (в том числе фибронектинами и ламининами). После того как нейробласты достигают области своей постоянной локализации, они начинают дифференцироваться и формировать отростки. Направление роста отростков также контролируется упомянутыми адгезивными молекулами (кадгерины, интегрины, сигнальные молекулы межклеточного вещества).

Во внутриутробном развитии и после рождения происходит конкурентное взаимодействие между аналогичными нейронами нервных центров. При этом нервные клетки, не успевшие занять соответствующую зону, либо сформировать контакты, подвергаются апоптозу. В раннем развитии погибает от трети до половины нервных клеток.

В последующем развитии вокруг нервных клеток формируется глиальное окружение и происходит миелинизация нервных волокон. Нервные клетки до полового созревания продолжают формировать отростки и синаптические контакты. Максимального развития нервная ткань достигает к 25-30 годам.

С возрастом наблюдается гибель части нервных клеток и компенсаторная гипертрофия других. В нейронах может накапливаться липофусцин. Области с погибшими телами нервных клеток замещаются глиальными рубцам, образованными скоплением гипертрофированных астроцитов.

Дендриты сильно ветвятся, образуя дендритное дерево, и обычно короче аксона. От дендритов возбуждение направляется к телу нервной клетки. Они формируют постсинаптические структуры, воспринимающие возбуждение. Дендритов много, но может быть один. Аксон присутствует всегда, по одному на каждую нервную клетку. Он не ветвится или слабо ветвится в терминальных областях и заканчивается синаптическим бутоном, передающим возбуждение на другие клетки (пресинаптическая зона). Нейроны передают возбуждение с помощью специализированных контактов (синапсов). Вещество, обеспечивающее передачу возбуждения, называется медиатором

. В каждом нейроне обычно обнаруживается один основной медиатор.

Регенерация нервных волокон в периферической нервной системе

После перерезки нервного волокна проксимальная часть аксона подвергается восходящей дегенерации, миелиновая оболочка в области повреждения распадается, перикарион нейрона набухает, ядро смещается к периферии, хроматофильная субстанция распадается. Дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами и глией. Леммоциты сохраняются и митотически делятся, формируя тяжи – ленты Бюнгнера. Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки, растущие вдоль лент Бюнгнера. А результате регенерации нервного волокна восстанавливается связь с органом-мишенью. При возникновении преграды на пути регенерирующего аксона (например, соединительнотканного рубца), восстановления иннервации не происходит.

С дополнениями из учебно-методического пособия «Общая гистология» (составители: Шумихина Г.В., Васильев Ю.Г., Соловьёв А.А., Кузнецова В.М., Соболевский С.А., Игонина С.В., Титова И.В., Глушкова Т.Г.)

Поделиться в соц. сетях

Нравится

Химический состав ткани

Специфика гистологии паренхимы мозга заключается в присутствии гематоэнцефалического барьера. Именно он обеспечивает избирательную проницаемость химических метаболитов, а также способствует накоплению отдельных компонентов в межклеточном веществе.

Поскольку структура нервной ткани состоит из серого вещества – тел нейронов, и белого – аксонов, то их внутренняя среда имеет отличия по химическому составу. Так, больше воды присутствует в сером веществе – на долю сухого остатка не более 16%. При этом половину занимают белки, а еще треть – липиды. Тогда как особенности строения нервных клеток белого вещества – нейроны структур центральной части мозга, предусматривают меньшее количество воды, и больший процент сухого остатка. Его насчитывают до 30%. К тому же и липидов вдвое больше, чем белков.

Белковые вещества в главных и вспомогательных клетках ткани мозга представлены альбуминами и нейроглобулинами. Реже присутствует нейрокератин – в оболочках нервных волокон и аксонных отростках. Множество белковых соединений свойственно медиаторам – мальтаза либо фосфатаза, а также амилаза. Медиатор поступает в синапс и этим ускоряет импульсы.

Присутствует в химическом составе углеводы – глюкоза, пентаза, а также гликоген. Имеются и жиры в минимальном объеме – холестерол, фосфолипиды, либо цереброзиды. Не менее важны микроэлементы, передающие нервный импульс по нервному волокну – магний, калий, натрий и железо. Они принимают участие в продуктивной интеллектуальной деятельности людей, регулируют функционирование мозга в целом.

Ссылка на основную публикацию
Похожее